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Abstract
A computer-aided design software package for

nonlinear control synthesis is discussed. The software
incorporates five different modern nonlinear control
methods. The versatility of the software lies in its
ability to develop nonlinear controllers using a
simulation model.  As a result, models of arbitrary
complexity can be used in the control law
development. The use of the design software is
illustrated through the design of nonlinear regulators
for a longitudinal missile model.

1. Introduction
Methods for nonlinear control system design has

been of interest in the recent literature1-7. This paper
discusses the development of a software package that
can be used for nonlinear controller synthesis. Design
techniques presented here can handle a large class of
system nonlinearities found in applications, including
saturation limits, friction and backlash.  They can
also provide nonlinear controllers for systems
containing look-up tables such as the aerodynamic
data in flight vehicle dynamic models.

Nonlinear control system design methods
discussed in the literature assume that the
mathematical models of the dynamic system are
available in symbolic form. Nonlinear controllers are
synthesized by manipulating the symbolic model.
While useful as a teaching tool, methods based on
symbolic manipulations are not amenable for use in
more complex applications due to presence of lookup
tables and complex nonlinearities not directly
describable in terms of symbolic expressions.
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The objective of the present paper is to present a
set of nonlinear control techniques that allow the use
of a numerical simulation model of the system for
nonlinear controller synthesis. The application of
these design techniques will be demonstrated using a
longitudinal missile model

 
obtained from Reference

8. In the interests of completeness, the missile model
from Reference 8 is described in section 2. Nonlinear
controller design methods are detailed in section 3.
Section 4 presents the simulation results using the
design software.

2. Missile Longitudinal Dynamics
The longitudinal dynamic model of the missile

employed in the present research is from Reference 8.
This model consists of four nonlinear differential
equations describing the pitch-plane rigid-body
dynamics of a missile. This model assumes constant
mass, with all the lateral state variables being zero.
The equations of motion are of the form:
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In these equations, the aerodynamic coefficients
have been replaced with their functional relationships
given in Reference 8.  The equations of motion
incorporate Mach number M, angle of attack α, flight
path angle γ and pitch rate Q as the state variables
and the pitch fin deflection δ as the control input.
Note that the dynamic system is strongly nonlinear.

3. Nonlinear Control Design Methods
The nonlinear controller design software is a

collection of functions that numerically implement
five nonlinear control synthesis techniques.  As stated
in the introduction, these methods employ a
simulation of the dynamic system. The well-known
MATLAB®/SIMULINK® numerical environment9, 10

is used to standardize the formulation of the
simulation models to be used in the design process.
The user can provide the model as a SIMULINK®

block diagram, a MATLAB® function or a dynamic
link library for use with MATLAB®. The design
model of the system is a simplified version of the
original system, with no actuator and sensor
dynamics. Moreover,  disturbances and uncertainties
that may be present in the truth model are eliminated
in the design model.

The nonlinear dynamic model used for controller
synthesis is assumed to be of the form:

( ) ( )u xgxfx +=&

If the system is specified in a more general form:
)u,x(hx =&

,
it can be augmented with integrators at the input to
convert the model into the standard form. Thus, the
augmented model

cuu),u,x(hx == &&

is in the standard form with uc as the control vector.
The nonlinear design techniques discussed in this

paper may be broadly classified into Transformation
Based Methods and Direct Methods as illustrated in
Figure 1. This classification is based on the way the
nonlinear design techniques utilize the system
dynamic model. In the transformation-based
approaches, the given dynamic model is transformed
either to the Brunovsky’s canonical form2, 11 or to the
state-dependent coefficient form1. Transformed
models are then used to design a state-dependent
Riccati equation controller1 or a feedback linearized
controller2 - 4.

Direct Methods, as the name implies, do not
require any transformation to be applied on the
original nonlinear system.  These methods employ
the user supplied models in the standard form to
synthesize the controller. Three design methods are
available in the design software. These are, a)

Quickest Descent method5, b) Back-Stepping
technique6 and c) Predictive Control7 approach.
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Figure 1  Methods implemented in the Nonlinear
Control Design Software

The following subsections will describe the five
different design approaches in further detail.

3.1. Feedback Linearization Method
In this approach, the system dynamic model is

transformed into the Brunovsky’s canonical form.
Pseudo-control variables are then defined to place the
system in linear, time-invariant form.

For a dynamic system with one control variable,

the transformed model is the form: BvAzz +=& ,
where z is the transformed state.  A and B are
constant matrices described as in equation (5):
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Pseudo control variable, v will be of the form:
( ) ( )u xGxFv += .  ( )xF  and ( )xG  are the nonlinear

functions of the states. Note that the transformation
pushes all the system nonlinearities to the input.

After the system is transformed into this form,
any linear control design method can be applied to
derive the pseudo control, v.   Actual control, u can
then be obtained from above relationship.   Three
pseudo control design methods are incorporated in
the software. These are: a) Robust Pole Placement
method12, b) Linear Quadratic design technique13 and
c) the Sliding Mode technique3.
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It has previously been observed14 that in higher-order
dynamic systems, the nonlinear controller robustness
can be significantly enhanced by designing multiple
time-scale controllers. Robustness in time-scale
separated controllers result from the fact that higher-
order partial derivatives of the nonlinearties on the
right hand sides of the nonlinear model are not used
in control law derivation. Additionally, time-scale
separated nonlinear controllers exploit the
hierarchical structure of the system states to simplify
control law implementation. The nonlinear control
system design software allows the user to impose any
desired time-scale structure on the controllers. Time-
scale separated dynamics can then be employed for
feedback linearized controller design.  Transformed
model after time-scale separation can be used in
conjunction with any of the linear control design
methods.

The design software does not permit the use of
sliding mode controllers in multiple time-scale
designs.  Since multiple time scale designs are based
on the assumption that fast time-scale designs do not
interact with the slow time-scale designs, the sliding
mode design methodology is inconsistent with the
notion of multiple time-scale controllers.  This is due
to the fact that sliding mode controllers employ high-
frequency switching control laws.   With sliding
mode designs , any assumed time-scale structure is
no longer valid since all time scale designs will
essentially chatter at the same frequency.

3.2. State-Dependent Riccati Equation Method
State Dependent Riccati Equation (SDRE)

method1 is the second technique that uses
transformed dynamic model for nonlinear controller
design. This approach first transforms the user
specified dynamic model into the State Dependent
Coefficient (SDC) form. SDC form is an
instantaneous parameterization of the original
nonlinear system with state dependent coefficients
A(x) and g(x).

The given nonlinear dynamic system
( ) ( )u xgxfx +=&

 is transformed into the SDC form,
( ) ( )  u. xgx xAx +=&

 Infinite number of such
realizations can be shown to exist1.  However, only
those parameterizations for which the pair

( ) ( )[ ]xg ,xA  is controllable at the given x  should be
considered for the design.

Note that the SDC parameterization is distinct
from the conventional Taylor series linearization, or
optimization-based linear approximations15.

The SDC form of the system state equations are
used to cast the control problem as an  infinite
horizon nonlinear regulator minimizing the cost:

( ) ( ) dt u xRu xxQx
2

1
J T

t

T

0

+∫=
∞

            (6)

subject to the nonlinear differential constraint:
( ) ( )u xgxfx +=&

.
The matrices Q(x) and R(x) are the design

parameters representing the state and control weights
as functions of x.

Reference 1 shows that the solution to this
problem can be obtained by solving a state dependent
Riccati equation:

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) 0QxPxgxRxgxP

xAxPxPxA
T1

T

=+−

+
−        (7)

The state dependent feedback gain can then be
computed as:

( ) ( ) ( ) ( )xPxgxRxK T1−=                 (8)
The SDRE nonlinear control law is of the form:

( )x xKu c −=                         (9)
Reference 1 has shown that under rather mild
restrictions of Q(x) and R(x), the SDRE control law
will globally stabilize the nonlinear dynamic system.

3.3. Quickest Descent Method
The Quickest Descent method discussed in

Reference 5 is a Lyapunov function optimizing
approach to feedback controller design. In this
approach, the control problem is viewed as a function
minimization problem in the state space.  A descent
function, W(x) satisfying certain specified properties
is first selected. Control is then chosen to minimize
this descent function.

The descent function W(x) is required to be
bounded, continuous and continuously differentiable
in the region of interest.  In addition, the target in the
state is required to be contained within the region of
interest.  Note that these requirements are more
restrictive than the choice of a Lyapunov function.

Once the descent function W(x) is selected, the
feedback control u(x) is chosen so that W(x)
decreases at each state x. If the minimization process
is cast as a steepest decent optimization problem, the
resulting technique can be termed as the steepest
decent control methodology. Reference 5 shows that
a more direct approach is to choose the control
variables to minimize the time-rate of change of the

descent function approach. In this case, the control
methodology can be termed as the Quickest Decent
method.



Copyright 1999 by Optimal Synthesis. All Rights Reserved. 

4

In the quickest descent method, control is
obtained from the optimization problem:

( ) ( ) ( ){ }
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Since the control variable appears linearly in the
system dynamics, the optimization problem is
meaningful only if the control variables are
constrained. The control constraints implemented in

the design software are of the form: maxuu ≤ .
With this, the quickest descent control is given

as:
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Note that the control is bang-bang. Under the
quickest descent method, the control variables will
chatter between their limits as the system approaches
the minimum of the descent function W(x).

In order to simplify the implementation, the
present implementation of the nonlinear control
design software assumes that the descent function is
always of the form:

( ) x PxxW T=                              (13)
with P being a positive definite matrix. In addition to
being positive definite, the elements of the matrix P
has to be carefully to ensure that the control
objectives are satisfied. Thus, selecting P to be a
diagonal matrix with positive entries may not result
in a desired control system response. The user has to
specify a properly populated P matrix to preserve the
coupling between the system state variables to
achieve the desired response.

3.4. Recursive Back-stepping Method
As observed in Subsection 3.1, the feedback
linearization method cancels the nonlinear system
dynamics and replaces it with a fixed dynamic
system. The main premise behind the recursive back
stepping technique6 is that certain portions of the
system nonlinearities are worth preserving. This
objective is satisfied by formulating the control
problem using the second method of Lyapunov.
Since there is no direct way to accomplish this in a
direct manner, a recursive procedure is defined for
synthesizing control laws. Just as the system
nonlinearities were pushed-back from the system
states to the inputs, recursive back stepping technique
constructs Lyapunov function for the nonlinear
dynamic system by stepping-back from the output
state variables to the controls. In some respects, this
technique bears a strong resemblance to the multiple
time-scale feedback linearization design technique.

The recursive back stepping design technique
assumes that the model is specified in a triangular
form as shown in equations (14) – (16):

( ) ( ) 211111 x xgxfx +=&
                             (14)

            ( ) ( ) 32122122 x x,xgx,xfx +=&
             (15)

M
( ) ( )u x,,x,xgx,,x,xfx n21nn21nn LL& +=   (16)

Each scalar system is stabilized with the
following state as the control variable.  For example,

2x is the control variable for 1x - dynamics, 3x  for

2x - dynamics and so on.
Controllers are synthesized for each scalar

dynamic system using second method of Lyapunov.
Lyapunov functions are selected based on the
nonlinearities that need to be preserved. Quadratic
Lyapunov functions are used more often than other
types.  As mentioned elsewhere, the advantage with
this design method is its ability to retain useful
nonlinearities in the system. However, the method is
useful only if the system has the desired triangular
structure.
The user is required to specify the back-stepping
structure of the system through a matrix. At each
stage of back-stepping, the user also has the freedom
to specify the Lyapunov function and the controller
rate of convergence. For the sake of simplicity, only
quadratic Lyapunov functions are implemented in the
current version of the design software.

3.5. Predictive Control
The predictive control methodology7 has been

popular in the process control industry for the past
several years. In this technique, a control history that
will drive the system states to the desired values at
the end of a prediction interval is computed at every
sample interval using an optimization algorithm.
Most of the techniques described in the literature
employ multi-step predictors to implement the
controllers. In nonlinear systems, the predictive
control technique requires the use of an on-line
iterative optimization technique. Since the
convergence of nonlinear optimization techniques are
not assured, the performance of the predictive control
technique cannot be guaranteed.

However, if the nonlinear dynamic system is of
the standard form employed in this paper, and if the
control problem is cast as a one-step ahead predictive
control, the system performance becomes more
predictable. This approach is adopted in the present
formulation of the nonlinear predictive control
technique in the design software.

The control problem is cast as the minimization
of the objective function
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( ) ( ) i
T
i1i

T
1i u tx,R u xtx,Q   x J +∆ ++     (17)

with respect to the control variable u, subject to the
differential constraint:

( ) ( )u xgxfx +=&
                        (18)

The differential constraint can be used to

eliminate 1ix + from the objective function by
defining a numerical integration algorithm. If the
nonlinear dynamic system is specified in the standard
form, the linearity of the differential constraints with
respect to the control variables can be preserved if
techniques such as Euler’s method or the Adams-
Bashforth numerical integration scheme16 are
employed.  In this case, the necessary conditions for
minimizing the objective function will turn-out to be
linear with respect to the control variables, and can
be solved in closed-form.

The use of the design methods described the
preceding subsections will now be applied to the
missile autopilot design problem in the following
section.

4. Nonlinear Missile Autopilot Design
This section will illustrate the application of the

nonlinear control design software for designing
autopilots for the missile model given in Section 2.

Autopilot deign will include only the short-
period dynamics of the missile, with α and Q as the
states.  The other two variables, γ and M, are
necessary for calculating the acceleration due  to
gravity and the aerodynamic force and moment.
These are treated as auxiliary inputs.  Pitch fin
deflection, δ is the control variable.

Simulation results are presented for each design
method. Each design function requires a separate set
of input data.  The inputs common to all functions
are, time, state vector, auxiliary inputs and the design
model.  The auxiliary inputs consist of all variables
other than the state and control variables that would
be necessary to compute the state derivatives.

4.1. Feedback Linearized Autopilot Designs
The first step in this design process is the

specification of the manner in which the control
variable affects the state variables. In the missile
autopilot design example, the fin deflection generates
a pitch rate, which in tern generates a change in angle
of attack. Although fin deflection also causes a
change in the angle of attack, this mechanism is not
useful for controlling the missile dynamics. Thus,
denoting α  as the first state variable, and Q as the
second state variable, the control flow matrix  is:

cfmatrix = [1  2]                     (19)

The variables γ and M are treated as auxiliary inputs
as mentioned earlier.

The feedback linearization function in the design
software generates a new dynamic system

( ) ( )δαα+αα=α  ,G,F &&&&
         (20)

The differentiation process is carried out numerically
in the software, using a state perturbation of

magnitude: 10
-4

. The right hand side of this equation
is next replaced with a pseudo control variable. The
control laws are then designed using the transformed
dynamics. As discussed earlier, this approach enables
the use of linear control system design methods.
Three distinct designs will be presented in the
following.  Control law design without time-scale
separation will only be demonstrated in this paper.

4.1.1. Robust Pole Placement design
The pole locations for the feedback linearized

dynamic system are chosen as:

poles = 







−−
+−

i142.14142.14

i142.14142.14

A 10 ms integration step size is used for all the
simulations unless otherwise specified.  State and
control responses from the pole placement design are
shown in Figure 2 and Figure 3 respectively.

4.1.2. Linear Quadratic design
The state and control weighting matrices for the

feedback linearized missile dynamics are chosen as:

Q = 







10

01000
, R = [0.01]

State and control responses from the linear quadratic
design are shown in Figure 4 and Figure 5
respectively.  Note that the responses from the
quadratic design are comparable to the ones from the
pole placement design.

4.1.3.  Sliding Mode design
The first step in this control system design

methodology is that of the specification of the sliding
manifold. This is achieved by specifying a set of
poles, one less than the order of the system. A best
estimate of the lower and upper bounds of the
uncertainties on the right hand sides of the system
equations are then specified. Finally, the designer has
to specify the convergence rate of the system to the
sliding manifold, and the boundary layer width. The
reader is referred to Reference 3 for a detailed
discussion on the sliding-mode design methodology.
For the present missile autopilot design example, the
pole P, the uncertainty bounds δ, the convergence
rate η and the boundary layer thickness ε are chosen
as:
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P = [-20], δ = 0, δl = 0, δu = 0, η= 20,  ε = 0.1

The state and control responses for the feedback
linearized sliding mode autopilot are shown in Figure
6 and Figure 7 respectively.

4.2. SDRE Autopilot
State Dependent Riccati Equation method

requires the designer to specify the state weighting
matrix Q and the control weighting matrix R. If the
designer desires it, the weighting matrices can also be
functions of the state.  Constant weights are
employed in this paper. These are:









=

100

0100
Q , R = 10

The resulting State and control responses are shown
in Figure 8 and Figure 9 respectively.
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Figure 2 State Responses for Feedback Linearization
with Pole Placement Design
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Figure 3 Fin Deflection for Feedback Linearization
with Pole Placement Design
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Figure 4 State Responses for Feedback Linearization
with Linear Quadratic Design
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Figure 5 Fin Deflection for Feedback Linearization
with Linear Quadratic Design
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Figure 6 State Responses for Feedback Linearization
with Sliding Mode Design
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Figure 7 Fin Deflection for Feedback Linearization
with Sliding Mode Design
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Figure 8 State Responses with SDRE Design
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Figure 9  Fin Deflection with SDRE Design

4.3. Quickest Descent Autopilot Design
As formulated in the design software, the only

design parameter in the quickest descent method is
the weighting matrix in the quadratic descent
function. Additionally, the limits on the control

variable also needs to be specified. As indicated
elsewhere in this paper, the descent function is
assumed to be of the form:

( ) x PxxW T=
For the present research, the design parameters are
chosen as:









=

15.0

5.05000
P

with the fin deflection bounded as: 01.0u ≤ . The
state and control responses for the quickest descent
autopilot are shown in Figure 10 and Figure 11
respectively.
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Figure 10 State Responses with Quickest Descent
Design

4.4. Recursive Back-Stepping Autopilot Design
Just as in the feedback linearization technique,

the recursive back-stepping design technique requires
the designer to specify the control distribution matrix.
As indicated in Subsection 4.1, this matrix is used to
convey the flow of the control variables through the
system states. The recursive back-stepping technique
uses this matrix to carry out the back stepping
procedure.

In addition to the control flow matrix, the
designer is required to specify the convergence rate
of the Lyapunov function at each step of the back-
stepping procedure.  The designer iterates on the
convergence rates to obtain the desired time-
response. For the present example, the convergence
rates employed were:

[ ]T2020D =
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Figure 11 Fin Deflection with Quickest Descent
Design

The state and control responses for the recursive
back-stepping autopilot are shown in Figure 12 and
Figure 13 respectively.

4.5. Predictive Autopilot Design
The design parameters in this technique are the

state and control weighting matrices, order of the
numerical integration technique and the prediction
step size. The following parameters were used in the
present case:









=

100

010
Q , R = 2

Numerical Integrator order = 2
Prediction Step = 0.001

The design software allows up to 12th order
integration. The state and control responses using the
predictive autopilot are shown in Figure 14 and
Figure 15 respectively.
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Figure 12 State Responses with Back-Stepping
Design
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Figure 13 Fin Deflection with Back-Stepping Design
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Figure 14  State Responses with Predictive Control
Design
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Figure 15 Fin Deflection with Predictive Control
Design

The simulation results can be summarized as
follows. Angle of attack (α) responses from the
feedback linearized regulator designs in cases 4.1.1
and 4.1.2 resemble second order system responses as
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shown in Figure 2 and Figure 4 respectively.  This is
natural because feedback linearized dynamics of the
system given by (20) is of second order.  However, in
case of sliding mode design given in Subsection
4.1.3, the response appears to be of first order nature
as can be observed  in Figure 6.

The responses from SDRE design technique are
over-damped for the particular choice of the state and
control weighting matrices, as shown in Figure 8. If
desired, alternate weighting matrices can be selected
to obtain any desired response. Quickest descent
design technique yields a bang-bang control law with
exponential characteristics as shown in Figure 10.
Back-Stepping designs are cascaded first order
designs and hence will possess exponential
characteristics as shown in Figure 12.  Responses
from the predictive control design are exponential as
shown in Figure 14 and resemble those from SDRE
design, although the solution methods are entirely
different between these two designs.

5. Summary
Application of a computer aided design software

for nonlinear control synthesis is presented in this
paper. Nonlinear longitudinal model of a missile was
used to illustrate the use of the software. The
versatility of the design software was then
demonstrated through five different nonlinear
designs. 

All the discussions in this paper were focussed
on the regulator problem. The nonlinear controller
design methodologies discussed in this paper can be
extended to handle the command tracking servo
problem. This investigation is currently in progress
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